
Atelier INSERM, La Londes les Maures, April 27-28, 2006

Statistics of motifs

Sophie SCHBATH

Institut National de la Recherche Agronomique
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1 Introduction

In this lecture we will essentially focus on the statistical analysis of the number of over-

lapping occurrences (count) of a given oligonucleotide (word), or a given degenerated

oligonucleotide (motif or word family), in a DNA sequence. Of course, there is no restric-

tion to sequences on a 4 letter alphabet. Related topics will be just mentioned at the end,

with appropriate references. Moreover, note that this lecture is part of a more complete

presentation published in the book DNA, Words and Models (Robin et al., 2003, 2005)

that contains much more references.

The question we would like to address is ”does this word occur in this sequence with

an expected frequency?” In other words, can we observe it so many times, or so few times,

just by chance? Usually, when the answer is no, such word is candidate to get a particular

biological meaning; only a candidate: statistical significance is not equivalent to biological

significance.

As a guiding example, we will look at the occurrences of the octamer gctggtgg in

the complete genome of Escherichia coli (leading strands). This word is known as the

Chi motif of the bacterium; it is very frequent, with 762 occurrences on the leading

strands and it is necessary for the stability of the chromosome. Let us do the following

simple calculation: ”if all the 48 octamers would have the same occurrence probability

in a sequence of length 4638858, then one expects to see each of them 4638851/48 ≃ 70

times in the sequence. At this point, the Chi motif seems very over-represented in E. coli

because we compare 762 occurrences with 70 occurrences.

The key idea is indeed to compare the observed count with the one we could expect

given some knowledge on the sequence. To decide if a word count is expected or not,

we need to know what to expect. This will be defined by a probabilistic model, i.e. by

the description of what is “random”. After choosing the appropriate model (Section 2),

1



one needs to evaluate the significance of the difference between observed and expected

count (Section 3). In fact, one will calculate the p-value which is the probability, under

our model, to observed as much (or as few) occurrences of our word of interest (Section

4). As we will see in Section 5, the p-value intrinsically depends on the chosen model: a

word can be exceptionally frequent in one model but expected in another one which, for

instance, takes more information on the sequence composition into account. Therefore,

when claiming that an observation is statistically significant, do not forget to mention

your a priori, your reference, your model.

2 A model as reference

As said in the introduction, to decide if a count is significantly too high or too low, one

needs to know its expected count. In genome analysis, we usually have a single obser-

vation for the observed count of a particular word. There is no way to get independent

and identically distributed copies of this count: words are not independent and genomes

are ”unique”. Therefore, the expected count has to be evaluated thanks to ”random

sequences” that look like, in some sense, the genome of interest.

Markov chain models are widely used in genome analysis for two reasons. First of all,

when their parameters are correctly estimated according to the analyzed genome, such

models fit the composition of the genome in words of length 1 up to (m+1), where m is the

chosen order for the Markov chain. It means in particular that the observed sequence is

compared to sequences that have the same composition in short words. It is also possible

to take the 3-periodicity of coding sequences into account (phased Markov chains) and

some heterogeneities (hidden Markov chains). Second, many theoretical results exist and

analytical probability calculations can often be performed, avoiding heavy simulations.

In the remainder, we will denote by Mm the Markov model of order m. From a

theoretical point of view, letters in a Markov chain of order m depend on the m previous

letters and they are generated thanks to transition probabilities. The Bernoulli model

which assumes independent letters is a particular case of the model M1.

3 Observed and expected count

Let consider the following notations:

• n is the genome length,

• A is the four letter DNA alphabet,
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• X = X1X2 · · ·Xn is a random sequence of letters from A (model Mm),

• w is a word of length h on A,

• N(·) denotes the count,

• Yi(w) is 1 if w occurs at position i in X, and 0 otherwise.

The number of occurrences of w in X can be written like

N(w) =
n−h+1∑

i=1

Yi(w)

and its expectation is simply EN(w) = (n − h + 1)P(w at i). The probability P(w at i)

can be easily expressed with respect to the transition probabilities. Usually, these transi-

tion probabilities are estimated according to the observed genome, for instance in model

M1, the probability that t is followed by a is estimated by Nobs(ta)/Nobs(t)1 where the

exponent obs indicates that it is the observed count in the genome.

We will then compare the observed count Nobs(w) of w with the following natural

estimator N̂m(w) of the expected count under model Mm. Here are some examples for

the 5-letter word atcga under models M0 (Bernoulli model) to M3:

Model Mm Fit Estimated expected count

M0 bases N̂0(w) =
Nobs(a)Nobs(t)Nobs(c)Nobs(g)Nobs(a)

n4

M1 dinucl. N̂1(w) =
Nobs(at)Nobs(tc)Nobs(cg)Nobs(ga)

Nobs(t)Nobs(c)Nobs(g)

M2 trinucl. N̂2(w) =
Nobs(atc)Nobs(tcg)Nobs(cga)

Nobs(tc)Nobs(cg)

M3 tetranucl. N̂3(w) =
Nobs(atcg)Nobs(tcga)

Nobs(tcg)

We clearly see that if we choose model Mm then, the estimated expected count

only depends on the composition of the genome in words of length (m + 1)

and m. It means that our count of reference only takes the composition in (m + 1)-letter

words (and shorter) into account. This is a key point as regard to the choice of the order

m in practice (see Section 5).

1To be completely rigorous one should divide by N(t+), the number of t’s followed by a letter . . .

3



Moreover, note that M3 is the maximal model to analyze the exceptionality of a 5-letter

word because, in M4 and higher models, the estimated expected count would be the

observed count itself. More generally the maximal model will be of order h − 2.

Table 1 gives the estimated expected count under various models of the Chi motif,

together with two other octamers, in both leading strands of E. coli. Clearly these counts

of reference change with the model: one can see for instance that the three octamers are

over-represented in all the models, despite its 70 occurrences ccggccta ”seems” excep-

tionally frequent as we take more and more information on E. coli ’s composition whereas

the 828 occurrences of ggcgctgg ”seems” expected given the heptamers of the genome.

Only the p-values will tell us if the observed counts are significantly different from the

estimated expected counts under each model.

gctggtgg ggcgctgg ccggccta

Fit 762 occurrences 828 occurrences 71 occurrences

M0 bases 85.944 85.524 70.445

M1 dinucl. 84.943 125.919 48.173

M2 trinucl. 206.791 255.638 35.830

M3 tetranucl. 355.508 441.226 14.697

M4 pentanucl. 355.312 392.252 15.341

M5 hexanucl. 420.867 633.453 27.761

M6 heptanucl. 610.114 812.339 25.777

Table 1: Estimated expected count of 3 octamers in both leading strands of E. coli under

models M0 to M6.

4 Scores and p-value

The first score of exceptionality that have been used in the literature was the ratio observed

count over (estimated)2 expected count. The problem with this crude score is that one

does not know its variability around 1 and one cannot give a significant threshold.

z-score asymptotically Gaussian Then, people thought to normalize the difference

between observed count and (estimated) expected count and to assume that this so-called

2I put some parenthesis because most of the time, people forget that the parameters of the model

have been estimated and then depend on the observed sequence; an estimator is then usually a random

variable.
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z-score is distributed, at least asymptotically, according to the N (0, 1). Before that the

variance of the count was provided, the normalizing factor used was the square root of

the (estimated) expected count as if the count would follow a Poisson distribution. As

we will see, this was not a so bad idea. In 1992, the formula for the variance came

out (Kleffe and Borodovsky (1992)) solving half of the problem. The z-score is indeed

asymptotically distributed according to the N (0, 1) distribution, but the limiting variance

1 is correct only if we assume that the parameters are the true ones. If they are estimated

according to the observed sequence, the square root of the estimated variance is no more

the appropriate normalizing factor. The good normalizing factor was finally proposed by

Prum et al. (1995) under M1, and generalized later in models Mm. Like the variance

of the count, the normalizing factor explicitly depends on the periods of the word; an

integer p < h is a period of the word w if and only if two occurrences of w may occur at

a distance p apart.

p-value The p-value P(N(w) ≥ Nobs(w)) can then be approximated by the probability

that a N (0, 1) random variable is greater that the observed value of the z-score. If the

p-value is close to zero, then the word is significantly frequent; if it is close to 1, it means

that P(N(w) < Nobs(w)) is close to zero and the word is significantly rare.

Compound Poisson approximation Because a word count is positive, a Gaussian

distribution is not really appropriate to approximate the distribution of the count of

an expectedly rare word (small estimated expected count). Poisson approximations are

known to be better for the count of rare events. In fact, a Poisson approximation is

satisfactory for the count of a non-overlapping word, but it is not for overlapping words.

Indeed, occurrences of an overlapping word produce clumps of overlapping occurrences.

The number of clumps can be correctly approximated by a Poisson variable but we need

to deal with the number of occurrences of the word in each clump. Since this clump size

is geometrically distributed, it leads to a compound Poisson approximation for the count

N(w) (Schbath (1995)). The p-value will then be approximated by the tail distribution

of the limiting compound Poisson distribution P(CP ≥ Nobs(w)).

Exact distribution Later, the exact distribution of the word count in a Markovian

sequence was provided either via a recursive formula (Robin and Daudin (1999), Robin

et al. (2005)) or its generating function (Régnier (2000)). In practice this exact distri-

bution is not really used, except for short sequences (<10kb), because numerical instabil-

ities happen with the recursive formula and symbolic calculation are required to get the
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Taylor expansion of the generating function. However, the exact distribution allows to

measure the quality of the approximations (Gaussian and compound Poisson) for medium

sequences.

Comparison Numerical comparisons performed in Robin and Schbath (2001) indicate

that the Gaussian distribution is well adapted when estimated expected counts are far

from 100, but should not be used when the expected count is less than 10. The compound

Poisson distribution performs very well, but in practice numerical instabilities may arise

to calculate the tail distribution (i.e. the approximate p-value) if the expected count is

large, say more than 100 (however works are in progress in this direction).

Large deviation A third method to approximate the p-value consists in using the

theory of large deviation (Nuel (2001)). It is particularly of interest to get an accurate

approximation of the p-value for very exceptional words.

Software Let just mention two softwares dedicated to the detection of exceptional

words: R’MES (http://genome.jouy.inra.fr/ssb/rmes/) and

SPatt (http://stat.genopole.cnrs.fr/spatt/).

5 Choice and influence of the model

The most frequent question about exceptional motifs is ”how to choose the order m of

the Markov model?”. In fact there is no a unique answer. Here are some elements that

have to be kept in mind when we are interested by the statistical significance of a word

count.

• Choosing model Mm means that the composition of the genome in oligonucleotides

of length (m+1) and shorter will be taken into account to get the estimated expected

count and the p-value.

• Higher the order m, better the fit and fewer unexpected events.

• The number of parameters to be estimated in model Mm is 3 × 4m; the sequence

should be long enough to have accurate estimates (ideally more than 1000 times the

number of parameters).
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Model Fit Expected z-score p-value Rank

M0 bases 85.944 72.9 < 10−323 3

M1 dinucl. 84.943 73.5 < 10−323 1

M2 trinucl. 206.791 38.8 < 10−323 1

M3 tetranucl. 355.508 22.0 1.4 10−107 5

M4 pentanucl. 355.312 22.9 2.3 10−116 2

M5 hexanucl. 420.867 19.7 1.0 10−86 1

M6 heptanucl. 610.114 10.6 1.5 10−26 3

Table 2: Estimated expected counts, z-scores and p-values (Gaussian approximation) for

the Chi motif in both strands of E. coli genome under models M0 to M6. The rank

corresponds to the rank of Chi when the 65536 octamers are sorted with respect to their

scores in decreasing order. Results obtained with the R’MES software.

As regard to these remarks, the maximal model (order m = h − 2) is of real interest

for rather short words because it allows to identify h-letter words having an exceptional

frequency which cannot be explained by the composition of the genome in shorter words.

When we are interested by some particular words, it should be fruitful to use all the

models. Either the word is exceptional in all models, meaning that biological investi-

gations should be done to understand such constraint on the genome, like for the Chi

motif in E. coli (see table 2). Or it looses its exceptionality as we increase the order of

the model, meaning that its frequency can be explained by the frequency of its subwords

(advantage of a pyramidal display, see Robin et al. (2005)), or it is exceptional in the

maximal model, meaning that it represents a real bias in the genome composition.

Table 3 is just to illustrate the fact that exceptionally frequent (resp. rare) words are

not necessarily the ones with a high (resp. low) count. The analysis has been made on

a DNA sequence of 111 402 bps from E. coli genome. It shows for instance that ggcct

occurs 91 times which is few under models M0, M1 and M2, but as soon as we take

into account the tetranucleotide composition of the sequence, 91 becomes significantly

too high; ggcct is the most exceptionally frequent 5-mer in the sequence. We have the

opposite situation with cctgg which occurs 150 times and is the most under-represented

5-mer under M3 in the sequence. The explanation is simply that ggcct is composed of

an exceptionally rare tetranucleotide (ggcc) and cctgg is composed of an exceptionally

frequent tetranucleotide (cctg) and only M3 knows these information.
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ggcct cctgg

obs exp z-score obs exp score

M0 91 127 -3.2 150 127 2.0

M1 91 107 -1.6 150 96 5.6

M2 91 105 -1.5 150 158 -0.7

M3 91 55 5.7 150 205 -5.4

the most over-represented the most under-represented

given the tetranucleotide composition

Table 3: Estimated expected counts and z-scores for ggcct and cctgg in a sequence of

111 402 bps from E. coli genome under models M0 to M3. Results obtained with the

R’MES software.

6 Related topics

Results exist for the number of occurrences of non-overlapping occurrences. For the

number of clumps, the exact distribution can be obtained via its generating function

(Stefanov et al. (2006)), and a Poisson approximation has been proposed (Schbath

(1995)). For the number of renewals, see Reinert et al. (2005) and references therein

(exact distribution, Gaussian and Poisson approximations).

Results exist to decide if distances between successive occurrences, or cumulative dis-

tances, are significantly too high or too low. Two kind of models are considered to

determine the reference: a Markov model on the sequence (Robin and Daudin (1999))

or a compound Poisson process for the word occurrences (Robin (2002)). The advantage

of the later model is that it takes the word frequency into account. Another approach

has been proposed by Gusto and Schbath (2005) to study statistically favored or avoided

distances between two motifs. Here the null hypothesis is that both motifs occur inde-

pendently, and we look at the correlation profiles that capture the departure from the

null hypothesis.

Finally, let mention that statistics of structured motifs (two words, called boxes, sep-

arated by a variable but bounded distance) is much more complicated than for simple

motifs because we cannot describe the complete overlapping structure of the structured

motifs. Some works have been done (Robin et al. (2002), Stefanov et al. (2006)) but

there is still room for improvements regarding generalizations to more than two boxes or

to degenerated boxes.
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Nuel, G. (2001). Grandes déviations et châınes de Markov pour l’étude des mots ex-
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