MetaFoldScan: a pipeline to scan metagenomes and identify structural homologs using HMM

Sandra Dérozier1,, Véronique Martin1,, Jean-Marc Chatel1,, Nalini Rama Rao1,, Valentin Loux1,, Gwenaëlle André-Leroux1*

1 MalAGE, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
2 MICALIS, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France

* equal contribution

Metafoldscan -MFS- aims at developing a user-friendly interface to intensively scan metagenomes and identify structural homologs connected to a target protein or to model exhaustively the whole proteins of a genome. To our knowledge, no solution that combines accurate browsing of meta-genomes and reasonable computational time is available. Yet, MFS addresses these points. Currently, it is set up with the core genome of the human gut microbiota that clusters 57 highly prevalent bacteria1,2 and with MAM - Microbial Anti-Inflammatory Molecule3 and MFD - Mutation Frequency Decline4. Both proteins associate structural challenge with biological and therapeutic relevance.

MetaFoldScan Pipeline

Target

- 3D Fold Bank
- MFD template
- MAM template

Query

- Genome X
- Genome Y
- Genome Z

Filtering of sequence candidates

Multiple Sequence Alignment of filtered candidates

Prediction and addition of secondary structure elements

HMM profile of the target bank1

HMM profile of Multiple Sequence Alignment5

Profile (candidate) vs profile (bank) comparison5

Extraction, Ranking & Analyse of scores

Hits prediction

Validation

- Crystal structure in vitro/in vivo testing
- Abundance classification

Biomarker ?

MetaFoldScan Galaxy

MetaFoldScan Galaxy Galaxie

MetaFoldScan Galaxy Galaxie Version 1.0

Profile of interest

- Target

Query

Query

Filtering of sequence candidates

Extraction & Ranking results

Hits prediction

Validation

Crystal structure in vitro/in vivo testing

Abundance classification

Biomarker ?

MFD template

MAM template

3D Fold Bank

HMM profile of the target bank1

HMM profile of Multiple Sequence Alignment5

Profile (candidate) vs profile (bank) comparison5

Extraction, Ranking & Analyse of scores

Hits prediction

Validation

- Crystal structure in vitro/in vivo testing
- Abundance classification

Biomarker ?

Results for Faecalibacterium prausnitzii-SL3_3

1 1/26/2016 11:20 AM

Extraction & Ranking results

Hits prediction

Validation

- Crystal structure in vitro/in vivo testing
- Abundance classification

Biomarker ?

Challenges tackled & Results

- Metafoldscan is accessible within the user-friendly Galaxy interface of the Migale platform: http://migale.jouy.inra.fr/galaxy/.
- Identification of structural homologs of MAM, only in the strain Faecalibacterium prausnitzii-SL3_3, confirming its ecological niche.
- Identification of structural homologs of Mfd, within the gut ecosystem, confirming its ubiquitous prevalence.

Perspectives

- Set-up of accurate filters to scale up to the 10 millions genes of the gut microbiota.
- Exploration of a network of proteins putatively highly conserved and involved in both signaling and metabolism in Actinobacteria.
- Validation of the hits and discovery of new enzymes with possibly therapeutic functions.

Bibliography